How do you find the derivative of y=6sin(2t) + cos(4t)?

3 Answers
Jun 10, 2018

y'=12cos(2t)-4sin(4t)

Explanation:

Using that

(sin(x))'=cos(x)
(cos(x))'=-sin(x)
and
(u+v)'=u'+v'
and the chain rule we get

y'=6cos(2t)*2-sin(4t)*4
so
y'=12cos(2t)-4sin(4t)

Jun 10, 2018

y'=4(3cos(2t)-sin(4t))

Explanation:

enter image source here
Let me know if you need clarification on any steps.

Jun 10, 2018

color(blue)(y' = 4 * (3 cos 2t - sin 4t)

Explanation:

y = 6 sin 2t + cos 4t

![www.pinterest.co.uk)

Applying the Chain rule,

y' = 6 * d(sin (2t)) + d (cos (4t))

y' = 6 cos 2t * d(2t) - sin 4t * d(4t)

y' = 6 * cos 2t * 2 - sin 4t * 4

y' = 12 cos 2t - 4 sin 4t

color(blue)(y' = 4 * (3 cos 2t - sin 4t)