What is #f(x) = int sqrt(x+3) dx# if #f(1)=7 #? Calculus Techniques of Integration Evaluating the Constant of Integration 1 Answer sjc May 26, 2018 #f(x)=2/3(1+3)^(3/2)+5/3# Explanation: #f(x)=intsqrt(x+3)dx# #f(x)=int(x+3)^(1/2)dx# now #d/(dx)(x+3)^(3/2)=3/2(x+3)^(1/2)# #f(x)=int(x+3)^(1/2)dx=2/3(x+3)^(3/2)+c# now #f(1)=7# #:.2/3(1+3)^(3/2)+c=7# #2/3xx8+c=7# #16/3+c=7# #=>c=7-16/3# #c=5/3# #:.f(x)=2/3(1+3)^(3/2)+5/3# Answer link Related questions How do you find the constant of integration for #intf'(x)dx# if #f(2)=1#? What is a line integral? What is #f(x) = int x^3-x# if #f(2)=4 #? What is #f(x) = int x^2+x-3# if #f(2)=3 #? What is #f(x) = int xe^x# if #f(2)=3 #? What is #f(x) = int x - 3 # if #f(2)=3 #? What is #f(x) = int x^2 - 3x # if #f(2)=1 #? What is #f(x) = int 1/x # if #f(2)=1 #? What is #f(x) = int 1/(x+3) # if #f(2)=1 #? What is #f(x) = int 1/(x^2+3) # if #f(2)=1 #? See all questions in Evaluating the Constant of Integration Impact of this question 1920 views around the world You can reuse this answer Creative Commons License