Recall that the integral of a function is the function (family) that has that derivative.
#int f(x) dx = F(x) +C# if and only if #F'(x) = f(x)#.
That is to say
#int F'(x) dx = F(x) +C#.
We know from our study of derivatives that
#d/dx(f(x)g(x)) = f(x) g'(x) + g(x) f'(x)#.
Written in terms of differentials, we have:
#d(uv) = u dv + v du#.
So, with #uv# in the role of #F(x)# above, we have
#int d(uv) = int (udv+vdu)#.
So,
#uv = intudv + intvdu#.
And
#intudv + intvdu = uv#.
Consequently,
#intudv = uv-intvdu#.
Written using prime notation, we have
#d/dx(f(x)g(x)) = f(x) g'(x) + g(x) f'(x)#.
#f(x)g(x) = int f(x) g'(x)dx + intg(x) f'(x)dx#
#int f(x) g'(x)dx + intg(x) f'(x)dx = f(x)g(x) #
#int f(x) g'(x)dx = f(x)g(x)- intg(x) f'(x)dx #