What are the asymptote(s) and hole(s), if any, of f(x) = lnx/xf(x)=lnxx?

1 Answer
Jul 19, 2017

The domain of the function is D=(0,+oo)D=(0,+)
and it's continious in that domain (there are no holes).

We must calculate lim_{xrarr0^+}f(x) so let's do it:

lim_{xrarr0^+}f(x)=lim_{xrarr0^+}lnx/x=lim_{xrarr0^+}1/x*lnx=(+oo)(-oo)=

-oo

Now because lim_{xrarr0^+}f(x)=-oo

the line x=0 is a vertical asymptode of f(x)

Now lets calculate lim_{xrarr+oo}f(x)

lim_{xrarr+oo}f(x)=lim_{xrarr+oo}lnx/x

This limit is (+oo)/(+oo) so we can use L'Hôpital's rule, so :

lim_{xrarr+oo}lnx/x=lim_{xrarr+oo}(1/x)/1=lim_{xrarr+oo}1/x=0

so the line y=0 is a horizontal asymptode of f(x)