Question #94034

2 Answers

The mass of potassium chlorate = 34.8 g

Explanation:

"2KClO"_3 rarr "2KCl" + "3O"_2 color(white)(mmmmmmmmmmmm)(1)2KClO32KCl+3O2mmmmmmmmmmmm(1)

"Volume O"_2 = "10.0 L"Volume O2=10.0 L
T = "(150 + 273.15) K" = "423.15 K"T=(150 + 273.15) K=423.15 K
P = "150 kPa" = "1.48 atm"color(white)(m)("1 kPa = 0.00986 atm")P=150 kPa=1.48 atmm(1 kPa = 0.00986 atm)

According to the Ideal Gas equation,

PV = nRTPV=nRT
R = "0.08206 L"."atm.K"^(-1)."mol"^(-1)R=0.08206 L.atm.K1.mol1
n = "no. of moles of O"_2n=no. of moles of O2

PV= nRTPV=nRT

n = (PV)/(RT)n=PVRT

n = ("1.48 atm" xx "10.0 L")/("0.08206 L·atm"·"K"^(-1)·"mol"^(-1) xx 423.15 K) = "0.4262 mol"n=1.48 atm×10.0 L0.08206 L⋅atmK1mol1×423.15K=0.4262 mol

"O"_2 = "0.4262 mol"color(white)(mmmmmmmmmmmmmmmm)(2)O2=0.4262 molmmmmmmmmmmmmmmmm(2)

According to the balanced equation

3 mol of "O"_2O2 is produced from the decomposition of 2 mol of "KClO"_3KClO3

0.4262 mol of "O"_2O2 will be produced from

(2 xx 0.4262)/3 color(white)(l)"mol KClO"_3 = "0.2841 mol of KClO"_32×0.42623lmol KClO3=0.2841 mol of KClO3

Therefore "KClO"_3 = "0.2841 mol"KClO3=0.2841 mol

"molar mass of KClO"_3 = "122.55 g/mol"molar mass of KClO3=122.55 g/mol

"mass of KClO"_3 = "122.55 g/mol" xx "0.2841 mol" = bb("34.82 g")mass of KClO3=122.55 g/mol×0.2841 mol=34.82 g

Feb 12, 2017

The reaction requires 34.8 g of "KClO"_3KClO3.

Explanation:

There are four steps involved in this problem:

  1. Write the balanced equation for the reaction.
  2. Use the Ideal Gas Law to calculate the moles of "O"_2O2.
  3. Use the molar ratio of "KClO"_3:"O"_2KClO3:O2 from the balanced equation to calculate the moles of "KClO"_3KClO3.
  4. Use the molar mass of "KClO"_3KClO3 to calculate the mass of "KClO"_3KClO3.

Let's get started.

Step 1. Write the balanced chemical equation.

"2KClO"_3 → "2KCl" + "3O"_22KClO32KCl+3O2

Step 2. Calculate the moles of "O"_2O2.

The Ideal Gas Law is

color(blue)(bar(ul(|color(white)(a/a)PV = nRTcolor(white)(a/a)|)))" "

P = "150 kPa"
V = "10.0 L"
R = "8.314 kPa·L·K"^"-1""mol"^"-1"
T = "150 °C" = "423.15 K"

We can rearrange the Ideal Gas Law to get:

n = (PV)/(RT) = (150color(red)(cancel(color(black)("kPa"))) × 10.0 color(red)(cancel(color(black)("L"))))/("8.314"color(red)(cancel(color(black)("L·atm·K"^"-1")))"mol"^"-1" × 423.15 color(red)(cancel(color(black)("K")))) = "0.4623 mol"

3. Calculate the moles of "KClO"_3.

"Moles of KClO"_3 = "0.4264" color(red)(cancel(color(black)("mol O"_2))) × "2 mol KClO"_3/(3 color(red)(cancel(color(black)("mol O"_2)))) = "0.2842 mol KClO"_3

4. Calculate the mass of "KClO"_3

"Mass of KClO"_3 = 0.2842 color(red)(cancel(color(black)("mol KClO"_3))) × "122.55 g KClO"_3/(1 color(red)(cancel(color(black)("mol KClO"_3)))) ="34.8 g KClO"_3