How do you use the chain rule to differentiate ln(tanx)ln(tanx)?

1 Answer
Jan 8, 2017

(dy)/(dx)=(sec^2x)/tanxdydx=sec2xtanx

Explanation:

We can treat f(x)=ln(tanx)f(x)=ln(tanx) as a function in terms of tanxtanx.

Let u=tanxu=tanx, y=lnuy=lnu

Chain rule: (dy)/(dx)=(dy)/(du)*(du)/(dx)dydx=dydududx

(dy)/(du)=1/udydu=1u

(du)/(dx)=sec^2xdudx=sec2x

:.(dy)/(dx)=1/(tanx)*sec^2x

=(sec^2x)/(tanx)

Further simplifying...

=(1/(cos^2x))/((sinx)/(cosx))

=1/(sinxcosx)

=2/(2sinxcosx)

=2/(sin2x)

=2csc2x