How do you use the chain rule to differentiate 2^(8x^3+8)?

1 Answer
Oct 20, 2016

=2^{8x^3+11}cdot 3x^2ln (2)

Explanation:

frac{d}{dx}(2^{8x^3+8})

Applying exponential rule,

a^b=e^{bln (a)}

=frac{d}{dx}(e^{(8x^3+8)ln (2)})

Applying chain rule,

frac{df(u)}{dx}=frac{df}{du}cdot frac{du}{dx}

Let (8x^3+8)ln (2)=u,

=frac{d}{du}(e^u)frac{d}{dx}((8x^3+8)ln (2))

we know,

=frac{d}{du}(e^u)=e^u

and,

=frac{d}{dx}((8x^3+8)ln (2))=24x^2ln(2)

Substituting back, u=(8x^3+8)ln (2)

=e^{(8x^3+8)ln (2)}cdot 24x^2ln (2)

Simplifying,
=2^{8x^3+11}cdot 3x^2ln (2)