How do you use the chain rule to differentiate #y=(3x^4-7x^3+3x^2-5x)^3#? Calculus Basic Differentiation Rules Chain Rule 1 Answer Henry W. Oct 9, 2016 #(dy)/(dx)=3(12x^3-21x^2+6x-5)(3x^4-7x^3+3x^2-5x)^2# Explanation: Chain rule: #(dy)/(dx)=(dy)/(du)*(du)/(dx)# Let #u=3x^4-7x^3+3x^2-5x#, then #(du)/(dx)=12x^3-21x^2+6x-5# #y=u^3#, so #(dy)/(du)=3u^2=3(3x^4-7x^3+3x^2-5x)^2# #:.(dy)/(dx)=(12x^3-21x^2+6x-5)*3(3x^4-7x^3+3x^2-5x)^2=3(12x^3-21x^2+6x-5)(3x^4-7x^3+3x^2-5x)^2# Answer link Related questions What is the Chain Rule for derivatives? How do you find the derivative of #y= 6cos(x^2)# ? How do you find the derivative of #y=6 cos(x^3+3)# ? How do you find the derivative of #y=e^(x^2)# ? How do you find the derivative of #y=ln(sin(x))# ? How do you find the derivative of #y=ln(e^x+3)# ? How do you find the derivative of #y=tan(5x)# ? How do you find the derivative of #y= (4x-x^2)^10# ? How do you find the derivative of #y= (x^2+3x+5)^(1/4)# ? How do you find the derivative of #y= ((1+x)/(1-x))^3# ? See all questions in Chain Rule Impact of this question 1915 views around the world You can reuse this answer Creative Commons License