How do you use the chain rule to differentiate y=(x2+5x)2+2(x35x)3?

1 Answer
Oct 9, 2016

dydx=2(2x+5)(x2+5x)+6(3x25)(x35x)2

Explanation:

Chain rule: dydx=dydududx

We do this twice to derive both (x2+5x)2 and 2(x35x)3

ddx(x2+5x)2: Let u=x2+5x, then dudx=2x+5
dydu=2(x2+5x)
So dydx=2(2x+5)(x2+5x)

ddx2(x35x)3: Let u=x35x, then dudx=3x25
dydu=6(x35x)2
So dydx=6(3x25)(x35x)2

Now adding both together,
dydx=2(2x+5)(x2+5x)+6(3x25)(x35x)2