How do you find the derivative of y = e^cosh(2x)y=ecosh(2x)?

1 Answer
Jun 7, 2016

frac{d}{dx}(e^{cosh (2x)})=e^{cosh (2x)}sinh (2x)2ddx(ecosh(2x))=ecosh(2x)sinh(2x)2

Explanation:

frac{d}{dx}(e^{cosh (2x)})ddx(ecosh(2x))
Applying the chain rule, frac{df(u)}{dx}=frac{df}{du}cdot frac{du}{dx}df(u)dx=dfdududx
Let,cosh (2x)=uLet,cosh(2x)=u
=frac{d}{du}(e^u)frac{d}{dx}(cosh (2x))=ddu(eu)ddx(cosh(2x))
We know,
frac{d}{du}(e^u)=e^uddu(eu)=eu
frac{d}{dx}(cosh (2x))=sinh (2x)2ddx(cosh(2x))=sinh(2x)2
So,
frac{d}{dx}(cosh (2x))=sinh (2x)2ddx(cosh(2x))=sinh(2x)2

substituted back,u=cosh (2x)u=cosh(2x)

we get,

e^{cosh (2x)}sinh (2x)2ecosh(2x)sinh(2x)2