How do you differentiate y=ln((6x5)6) using the chain rule?

2 Answers
Jun 1, 2016

ddx(ln((6x5)6))=366x5

Explanation:

ddx(ln((6x5)6))

Applying chain rule,df(u)dx=dfdududx

Let,(6x5)6=u
=ddu(ln(u))ddx((6x5)6)

We know,
ddu(ln(u))=1u
and,
ddx((6x5)6)=36(6x5)5

So,
=1u36(6x5)5

substituting back,:u=(6x5)6

=1(6x5)636(6x5)5

Simplifying it,we get,

366x5

Jun 1, 2016

Use properties of logarithms to write y=6ln(6x5) then us ddx(lnu)=1ududx

Explanation:

y=ln((6x5)6)=6ln(6x5)

So,

dydx=6[16x5ddx(6x5)]

=6[16x5(6)]

=366x5