What is the derivative of (xe^-x)/(x^3+x)?

1 Answer
Jun 1, 2016

frac{d}{dx}(frac{xe^{-x}}{x^3+x})=frac{-e^{-x}x^4-e^{-x}x^2-2e^{-x}x^3}{(x^3+x)^2}

Explanation:

frac{d}{dx}(frac{xe^{-x}}{x^3+x})

Applying quotient rule,
(frac{f}{g})^'=frac{f^'cdot g-g^'\cdot f}{g^2}

=frac{frac{d}{dx}(xe^{-x})(x^3+x)-frac{d}{dx}(x^3+x)xe^{-x}}{(x^3+x)^2}

We know,
frac{d}{dx}(xe^{-x})=e^{-x}-e^{-x}x
and,
frac{d}{dx}(x^3+x)=3x^2+1

So,
=frac{(e^{-x}-e^{-x}x)(x^3+x)-(3x^2+1)xe^{-x}}{(x^3+x)^2}

Simplifying it,we get,
frac{d}{dx}(frac{xe^{-x}}{x^3+x})=frac{-e^{-x}x^4-e^{-x}x^2-2e^{-x}x^3}{(x^3+x)^2}