How do you find the derivative of the function y = sin(tan(5x))y=sin(tan(5x))?

1 Answer
May 24, 2016

\cos (\tan (5x))\sec ^2(5x)5cos(tan(5x))sec2(5x)5

Explanation:

\frac{d}{dx}(\sin (\tan (5x)))ddx(sin(tan(5x)))

Applying chain rule,
\frac{df(u)}{dx}=\frac{df}{du}\cdot \frac{du}{dx}df(u)dx=dfdududx

Let tan(5x)tan(5x) = u

We know,
\frac{d}{du}(\sin(u))=\cos(u)ddu(sin(u))=cos(u)

\frac{d}{dx}(\tan(5x))=\sec ^2(5x)5ddx(tan(5x))=sec2(5x)5

So,
=\cos(u)\sec ^2(5x)5=cos(u)sec2(5x)5

Substituting back,tan(5x)tan(5x) = u

=\cos(\tan(5x))\sec ^2(5x)5=cos(tan(5x))sec2(5x)5