How do you differentiate y = 2^xlog_2(x^4)?

3 Answers
Mar 1, 2016

f = 2^x, g = log_2(x^4)->f'=2^xln2, g' = 1/(x^4ln2)*4x^3
y'=fg'+gf'=(2^x4x^3)/(x^4ln2) +( 2^xln2)(log_2x^4)

Explanation:

Use the product rule to differentiate y. Call the first one be f and the second one be g and take the derivatives of each of them then put it in to the product rule

Mar 1, 2016

\frac{d}{dx}(2^x\log _2(x^4))=\frac{2^x(x\log _2(x^4)\ln ^2(2)+4)}{x\ln (2)}

Explanation:

\frac{d}{dx}(2^x\log _2(x^4))

Applying product rule as: (f\cdot g)^'=f^'\cdot g+f\cdot g^'
f=2^x,g=\log _2(x^4)

=\frac{d}{dx}(2^x)\log _2(x^4)+\frac{d}{dx}(\log _2(x^4))2^x

\frac{d}{dx}(2^x)=2^x\ln(2)

\frac{d}{dx}(\log _2(x^4))=\frac{4}{x\ln (2)}

finally,
=2^x\ln(2)\log _2(x^4)+\frac{4}{x\ln (2)}2^x

Simplifying,
=\frac{2^x(x\log _2(x^4)\ln ^2(2)+4)}{x\ln (2)}

Mar 1, 2016

To solve this problem it would help if we remember these two intermediate results (proof given below),
Result 1: \frac{d}{dx}a^x=a^x\ln(a)
Result 2: \frac{d}{dx}\log_b(x^n)=\frac{n}{x\ln(b)}

y = 2^x\log_2(x^4);

Applying the Chain Rule,
\frac{dy}{dx} = [\frac{d}{dx}(2^x)]\log_2(x^4) + 2^x[\frac{d}{dx}\log_2(x^4)]

Apply the two results mentioned above,
\frac{dy}{dx} = [2^x\ln(2)]log_2(x^4) + 2^x[\frac{4}{x\ln(2)}]
\qquad \quad = \ln(2)y+\frac{4}{\ln(2)}\frac{2^x}{x}

Proof of Result 1:
Let \quad y=a^x \qquad => \ln(y) = x\ln(a).
Differentiating once,
1/y\frac{dy}{dx} = \ln(a) \qquad => \frac{dy}{dx} = y\ln(a)=a^x\ln(a)

Proof of Result 2:
Let \quad y=\log_b(x^n)
Using the logarithm-base rule, \log_b(x^n) = \log_e(x^n)/\log_e(b), we can write y as -

y = \frac{\ln(x^n)}{\ln(b)}=\frac{n}{\ln(b)}\ln(x)

\frac{dy}{dx} = \frac{n}{\ln(b)}1/x=\frac{n}{x\ln(b)}