How do you integrate int x^3 e^x dx x3exdx using integration by parts?

1 Answer
Mar 1, 2016

\int x^3e^xdx=x^3e^x-3(x^2e^x-2(e^x x-e^x))+Cx3exdx=x3ex3(x2ex2(exxex))+C

Explanation:

\int x^3e^xdxx3exdx

Applying integration by parts as: \int uv'=uv-\int u'v
u=x^3,u'=3x^2,v'=e^x,v=e^x

=x^3e^x-\int 3x^2e^xdx

\int 3x^2e^xdx=3(x^2e^x-2(e^x x-e^x)) as under

=\int 3x^2e^xdx

taking the constant out as: \int a\cdot f(x)dx=a\cdot \int f(x)dx

=3\int x^2e^xdx

Applying integration by parts as: \int uv'=uv-\int u'v

u=x^2,u'=2x,v'=e^x,v=e^x

=3(x^2e^x-\int2xe^xdx)

taking the constant out as: \int a\cdot f(x)dx=a\cdot \int f(x)dx

=3(x^2e^x-2\int xe^xdx)

Applying integration by parts as: \int uv'=uv-\int u'v

u=x,u'=1,v'=e^x,v=e^x

=3(x^2e^x-2(xe^x-\int 1e^xdx))

=3(x^2e^x-2(e^x x-\int e^xdx))

Using the common integral \inte^xdx=e^x
=3(x^2e^x-2(e^x x-e^x))

=x^3e^x-3(x^2e^x-2(e^x x-e^x))

Adding a constant to the solution,

=x^3e^x-3(x^2e^x-2(e^x x-e^x)) +C