Question #8c487

1 Answer
Mar 1, 2016

\int \tan ^5(7x)\sec ^4(7x)dx=\frac{1}{7}(\frac{1}{8}\sec ^8(7x)-\frac{1}{3}\sec ^6(7x)+\frac{1}{4}\sec ^4(7x))+C

Explanation:

\int \tan ^5(7x).sec ^4(7x)dx

We know,
\tan ^5(7x)=\tan ^4(7x).tan(7x) i.e. applying the algebric property x^(a) = x^(a-1) . x

=\int \tan ^4(7x)\tan (7x)\sec ^4(7x)dx

Also,
\tan ^4(7x)=(\tan ^2(7x))^2

=\int(\tan ^2(7x))^2\tan(7x)\sec ^4(7x)dx

Now,using the identity : \tan ^2(x)=-1+\sec ^2(x)

=\int(-1+\sec ^2(7x))^2\tan (7x)\sec ^4(7x)dx

Applying integral substitution as: \int f(g(x))\cdot g^'(x)dx=\int f(u)du,quad u=g(x)
\sec (7x)=u\quad dx=\frac{1}{7\tan (7x)\sec(7x)}du as shown below,

Substituting sec(7x)=u
=\int (-1+u^2)^2\tan(7x)u^4\frac{1}{7\tan(7x)u}du

=\int \frac{1}{7}u^3(u^2-1)^2du

Taking the constant out as: \int a\cdot f(x)dx=a\cdot \int f(x)dx

=\frac{1}{7}\int u^3(u^2-1)^2du

Expanding u^3(u^2-1)^2

=\frac{1}{7}\int (u^7-2u^5+u^3)du

Applying sum rule as: \int f(x)\pm g(x)dx=\int f(x)dx\pm \int g(x)dx

=\frac{1}{7}(\int u^7du-\int 2u^5du+\int u^3du)

Now,we know
\int u^7du=\frac{u^8}{8}
\int 2u^5du=\frac{u^6}{3} (2(u^6)/6 =u^6/3)
\int u^3du=\frac{u^4}{4}

i.e
=\frac{1}{7}(\frac{u^8}{8}-\frac{u^6}{3}+\frac{u^4}{4})

Substituting back u=sec(7x),
=\frac{1}{7}(\frac{\sec ^8(7x)}{8}-\frac{\sec ^6(7x)}{3}+\frac{\sec ^4(7x)}{4})

Simplifying it,
=\frac{1}{7}(\frac{1}{8}\sec ^8(7x)-\frac{1}{3}\sec ^6\left(7x)+\frac{1}{4}\sec ^4(7x))

Finally adding constant to the solution,

=\frac{1}{7}(\frac{1}{8}\sec ^8(7x)-\frac{1}{3}\sec ^6\left(7x)+\frac{1}{4}\sec ^4(7x)) + C