How do you differentiate f(x)=e^(((ln(x^2+3))^2)f(x)=e((ln(x2+3))2) using the chain rule.?

2 Answers
Feb 27, 2016

e^((ln(x^2+3))^2)*4x(ln(x^2+3)/(x^2+3))e(ln(x2+3))24x(ln(x2+3)x2+3)

Explanation:

first find the derivative of ((ln(x^2+3))^2)((ln(x2+3))2), the expression in the power of e then multiply it with e^((ln(x^2+3))^2)e(ln(x2+3))2

Set u(x)=(ln(x^2+3))^2u(x)=(ln(x2+3))2 hence

((df)/dx)=e^(u(x))*((du)/dx)(dfdx)=eu(x)(dudx)

where

(du)/dx=[4xln(x^2+3)]/[x^2+3]dudx=4xln(x2+3)x2+3