How do you differentiate f(x)=sin(e4x) using the chain rule.?

1 Answer
Feb 9, 2016

[2e^(4x)cos(e(^4x))] / [sqrt sin(e^(4x)]

Explanation:

Applying chain rule
df(u)/dx= df/du .du/dx
let sin e^(4x) =u
d/du √u . d/dx (sin(e^(4x)))
we have,
d/du √u=1/(2√u)
and
d/dx (sin(e^(4x)))

Applying chain rule,
df(u)/dx= df/du .du/dx
let e4x=u
ddu (sin(u) ddx

ddu sin(u) = cos(u)
ddx(e4x)
Applying chain rule,
df(u)/dx= df/du .du/dx
let 4x=u
solving it we get,
e4x4
now, cos(u) e4x4
u= e4x
= cos(e4x) e4x4

Finally,
12u cos(e4x) e4x4
Substitute u= sin( (e4x)
=12sin(e4x) cos( (e4x)e4x4
simplifying we get,
2e4xcos(e4x)sin(e4x)