How do you differentiate f(x)=e3lnx+x2 using the chain rule.?

1 Answer
Jan 16, 2016

dydx=e3lnx+x2(3x+2x)(23lnx+x2)

Explanation:

The chain rule:

dydx=dydududvdvdx

y=eu,dydu=eu

u=v12,dudv=12v(12)

v=3lnx+x2,dvdx=3x+2x

dydx=eu12v(3x+2x)

dydx=e3lnx+x2(3x+2x)(23lnx+x2)