How do you find the derivative of y = 6 cos(x^3 + 3) using the chain rule?

1 Answer
Nov 11, 2015

(dy)/(dx) = -18x^2sin(x^3+3)

Explanation:

"Let " u=x^3+3 -> (du)/(dx)=3x^2

"Let " v= cos(u) -> (dv)/(du) = -sin(u)

"Let " y= 6v -> (dy)/(dv) = 6

Target is (dy)/(dx)

By cancelling out (dy)/(dx) = (dy)/(dv) times (dv)/(du) times (du)/(dx)

(dy)/(dx) = (6) times {-sin(u)} times (3x^2)

(dy)/(dx) = (6) times (-1) times (3) times {sin(u)} times {x^2}

(dy)/(dx) = -18x^2sin(x^3+3)