How can I tell whether a geometric series converges?

1 Answer
Jul 2, 2015

A geometric series of geometric sequence u_n= u_1 * r^(n-1) converges only if the absolute value of the common factor r of the sequence is strictly inferior to 1; in other words, if |r|<1.

Explanation:

The standard form of a geometric sequence is :

u_n = u_1 * r^(n-1)

And a geometric series can be written in several forms :

sum_(n=1)^(+oo)u_n = sum_(n=1)^(+oo)u_1*r^(n-1) = u_1sum_(n=1)^(+oo)r^(n-1)

= u_1*lim_(n->+oo)(r^(1-1) + r^(2-1) + r^(3-1) + ... + r^(n-1))

Let r_n = r^(1-1) + r^(2-1) + r^(3-1) + ... + r^(n-1)

Let's calculate r_n - r*r_n :

r_n - r*r_n = r^(1-1) - r^(2-1) + r^(2-1) - r^(3-1) + r^(3-1) + ... - r^(n-1) + r^(n-1) - r^n = r^(1-1) - r^n

r_n(1-r) = r^(1-1) - r^n = 1 - r^n

r_n = (1 - r^n)/(1-r)

Therefore, the geometric series can be written as :

u_1sum_(n=1)^(+oo)r^(n-1) = u_1*lim_(n->+oo)((1 - r^n)/(1-r))

Thus, the geometric series converges only if the series sum_(n=1)^(+oo)r^(n-1) converges; in other words, if lim_(n->+oo)((1 - r^n)/(1-r)) exists.

  • If |r| > 1 : lim_(n->+oo)((1 - r^n)/(1-r)) = oo

  • If |r| < 1 : lim_(n->+oo)((1 - r^n)/(1-r)) = 1/(1-r).

Therefore, the geometric series of geometric sequence u_n converges only if the absolute value of the common factor r of the sequence is strictly inferior to 1.