How do you find the derivative of #y= x*sin(1/x)# ?
1 Answer
Answer is
Solution
Using the product rule,
#y=f(x)*g(x)#
#y'=f(x)*g'(x)+f'(x)*g(x)#
Similarly, for the function mentioned in question,
#y'=x*(sin(1/x))'+sin(1/x)#
Now considering
then,
#v'=(sinf(x))'=cos(f(x))*f'(x)# ,
which implies,
#(sin(1/x))'=cos(1/x)(-1/x^2)#
Hence,
#y'=-1/x*cos(1/x)+sin(1/x)#