What's the integral of #int sinx * tanxdx#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Tom Nov 11, 2015 #intsin(x)tan(x)dx = intsin^2(x)/cos(x)dx = int(sin^2(x)cos(x))/cos^2(x)dx# let's #t = sin(x)# #dt = cos(x)# #int(t^2)/(1-t^2)dt=int(t^2-1+1)/(1-t^2)dt = -int(1-t^2-1)/(1-t^2)dt# #=-(intdt-int1/(1-t^2)dt)# #=-[t]+[arctanh(t)]+C# Substitute back for #t=sin(x)# #-[sin(x)]+[arctanh(sin(x))]+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 1428 views around the world You can reuse this answer Creative Commons License