What real function is (e^(ix)-e^(-ix))/(ie^(ix)+ie^(-ix)) equal to?

1 Answer
Oct 24, 2015

tan(x)

Explanation:

e^(ix) = cos(x)+i sin(x)

cos(-x) = cos(x)

sin(-x) = -sin(x)

So:

e^(ix)-e^(-ix) = (cos(x)+i sin(x))-(cos(-x)+i sin(-x))

=(cos(x) + i sin(x))-(cos(x)-i sin(x)) = 2i sin(x)

And:

e^(ix)+e^(-ix) = (cos(x)+i sin(x))+(cos(-x)+i sin(-x))

=(cos(x) + i sin(x))+(cos(x)-i sin(x)) = 2 cos(x)

So:

(e^(ix)-e^(-ix))/(ie^(ix)+ie^(-ix))=(2i sin(x))/(2i cos(x)) = sin(x)/cos(x) = tan(x)