What real function is (e^(ix)-e^(-ix))/(ie^(ix)+ie^(-ix)) equal to?
1 Answer
Oct 24, 2015
Explanation:
e^(ix) = cos(x)+i sin(x)
cos(-x) = cos(x)
sin(-x) = -sin(x)
So:
e^(ix)-e^(-ix) = (cos(x)+i sin(x))-(cos(-x)+i sin(-x))
=(cos(x) + i sin(x))-(cos(x)-i sin(x)) = 2i sin(x)
And:
e^(ix)+e^(-ix) = (cos(x)+i sin(x))+(cos(-x)+i sin(-x))
=(cos(x) + i sin(x))+(cos(x)-i sin(x)) = 2 cos(x)
So:
(e^(ix)-e^(-ix))/(ie^(ix)+ie^(-ix))=(2i sin(x))/(2i cos(x)) = sin(x)/cos(x) = tan(x)