What is x if -4(x+2)^2=-20?

3 Answers
Jul 21, 2018

" "
Approximate values of color(red)(x) are:

color(blue)(x~~0.236

color(blue)(x~~-4.236

Explanation:

" "
How do we find the value of color(red)(x using

color(red)([-4(x+2)^2]=(-20)

rArr (-4)(x^2+4x+4)=(-20)

Divide both sides of the equation by color(red)((-4)

rArr [(-4)(x^2+4x+4)]/((-4))=((-20))/((-4)

rArr [cancel (-4)(x^2+4x+4)]/(cancel ((-4)))=((-20))/((-4)

rArr x^2+4x+4=5

Subtract color(red)(5) from both sides of the equation.

rArr x^2+4x+4-5=5-5

rArr x^2+4x+4-5=cancel 5-cancel 5

rArr x^2+4x-1=0 ...Eqn.1

We now have a quadratic equation.

Use the quadratic formula to find the values of color(red)(x

Quadratic formula:

color(blue)(x=[-b+-sqrt(b^2-4ac)]/(2a)

Using Eqn.1, we get

a=1; b=4 and c= (-1)

Substitute the values in the quadratic formula above:

color(blue)(x=[-4+-sqrt(4^2-4*1*(-1))]/(2*1)

x=[-4+- sqrt(16+4)]/2

x=[-4+-sqrt(20)]/2

x=[-4+-sqrt(4*5)]/2

x=[-4+- sqrt(4)*sqrt(5)]/2

x=[-4+-2*sqrt(5)]/2

x=(-4/2)+-(2*sqrt(5))/2

x=(-2)+-(cancel 2*sqrt(5))/cancel 2

x=-2+-sqrt(5)

x=-2-sqrt(5), x=-2+sqrt(5)

Using a spreadsheet software or a calculator, we get

enter image source here

Hence, approximate values of color(red)(x) are:

color(blue)(x~~0.236

color(blue)(x~~-4.236

Hope it helps.

Jul 21, 2018

x=-2+sqrt5 and -2-sqrt5

Explanation:

Let's start by dividing both sides by -4. We now have

(x+2)^2=5

Let's take the square root of both sides to get

x+2=sqrt5 and x+2=-sqrt5

Subtracting 2 from both sides of both equations, we get

x=-2+sqrt5 and -2-sqrt5

Hope this helps!

Jul 21, 2018

x = -2 +- sqrt5

Explanation:

-4(x+2)^2 = -20

First, divide both sides by color(blue)(-4):
(-4(x+2)^2)/color(blue)(-4) = (-20)/color(blue)(-4)

(x+2)^2 = 5

Expand/simplify the left hand side:
x^2 + 4x + 4 = 5

Subtract color(blue)5 from both sides:
x^2 + 4x + 4 quadcolor(blue)(-quad5) = 5 quadcolor(blue)(-quad5)

x^2 + 4x - 1 = 0

This is now in standard form, ax^2 + bx + c.

Use the quadratic formula (-b +- sqrt(b^2 - 4ac))/(2a) to find the value of x:
x = (-4 +- sqrt(4^2 - 4(1)(-1)))/(2(1))

x = (-4 +- sqrt(16 + 4))/2

x = (-4 +- sqrt20)/2

x = (-4 +- 2sqrt5)/2

x = -2 +- sqrt5

Hope this helps!