What is the value of the limit?
1 Answer
Explanation:
Let's multiply the top and bottom of the fraction by the conjugate
#lim_(x->0)((x^2-2x)(x+sqrtabsx))/((x-sqrtabsx)(x+sqrtabsx))#
#= lim_(x->0)((x^2-2x)(x+sqrtabsx))/(x^2 - absx)#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Now let's take the left and right limits. As
#lim_(x->0^-)((x^2-2x)(x+sqrt(-x)))/(x^2 - (-x))#
#= lim_(x->0^-)((x^2-2x)(x+sqrt(-x)))/(x^2 + x)#
Now divide both sides by
#= lim_(x->0^-)((x-2)(x+sqrt(-x)))/(x+1)#
#= ((0-2)(0+sqrt0))/(0+1) = (-2(0))/1 = 0#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As
#lim_(x->0^+)((x^2-2x)(x+sqrt(x)))/(x^2 - x)#
Now divide both sides by
#= lim_(x->0^+)((x-2)(x+sqrt(x)))/(x-1)#
#= ((0-2)(0+sqrt0))/(0-1) = (-2(0))/(-1) = 0#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
So
Since the left and right limit both equal zero, we can say that the limit itself is also equal to zero.
#lim_(x->0)(x^2-2x)/(x-sqrtabsx) = 0#
Final Answer