What is the sum of the arithmetic sequence 9,14,19... if there are 34 terms?

1 Answer
May 25, 2016

Built the equation for the sum of an arithmetic sequence and used it to derive the solution.

color(green)(=128+2975=3111)

Explanation:

Let the sequence position be i
Let the sequence position of the last term be n

Let the difference between each term be d

Let the ith term in the sequence be a_i
Let the last term in the sequence be a_n

So
a_i->a_1=9
a_i->a_2=14
a_i->a_3=19
a_i->a_n=a_34=?" "larr "the last term in the sequence"

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Investigating the 'common difference' between each term")

14-9= 5
19-14=5

color(green)("the difference between each successive term is "d=5)

'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the value of the 34th term")

So if a_i->a_1 = 9" " then " "a_i->a_0 = 9-5=4

So
a_1=a_0+d
a_2=a_0+d+d" "->" "a_0+2d
a_3=a_0+d+d+d" "->" "a_0+3d

so a_i=a_0+(ixxd)

and a_n=a_0+(nxxd)

So a_n=a_34=a_0+(34xxd)" "->" "4+(34xx5) = 174
'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Determine the sum of the 34 terms")

Consider again the:
a_1=a_0+d
a_2=a_0+d+d" "->" "a_0+2d
a_3=a_0+d+d+d" "->" "a_0+3d

The sum of a_1 to a_3 is:

a_1->a_0+d
a_2->a_0+2d
a_3->underline(a_0+3d)" "larr" add"
" "3a_0+6d

Which is the same as:

3a_0+(d+2d+3d)

3a_0+d(1+2+3)

3a_0+d(3xx"Mean value")

(ixxa_0) + d(ixx("first count+last count")/2)

(ixxa_0)+d(ixx(1+i)/2)
'.....................................................
So for a count of n terms we have

color(green)((na_0)+d(nxx(1+n)/2))

color(red)("Notice that in the end I did not need the value of the last term")
'.................................................
n=34
d=5
a_0=4

sum of the sequence is (34xx4)+5(34xx(1+34)/2)

color(green)(=136+2975=3111)