sqrt(8)√8 can be rewritten as:
sqrt(4 * 2 * -1)√4⋅2⋅−1
We can use this rule for radicals to simplify the expression:
sqrt(color(red)(a) * color(blue)(b)) = sqrt(color(red)(a)) * sqrt(color(blue)(b))√a⋅b=√a⋅√b
sqrt(color(red)(4) * color(blue)(2) * color(green)(-1)) =>√4⋅2⋅−1⇒
sqrt(color(red)(4)) * sqrt(color(blue)(2)) * sqrt(color(green)(-1)) =>√4⋅√2⋅√−1⇒
2sqrt(color(blue)(2)) * sqrt(color(green)(-1))2√2⋅√−1
The symbol ii which is an imaginary number is another way to write: sqrt(-1)√−1 so we can rewrite the expression as:
2sqrt(color(blue)(2)) * i =>2√2⋅i⇒
2isqrt(color(blue)(2))2i√2
If necessary we can approximate sqrt(2)√2 as 1.4141.414 and get:
2 * 1.414i =>2⋅1.414i⇒
2.828i2.828i