What is the limit of #(x - ln x)# as x approaches #oo#?

1 Answer
Jan 22, 2017

This limit goes unbounded to #+infty#.

Explanation:

Trying to "substitute", gives us the indeterminate form #infty - infty#.

Recall that #x = lne^x# and #lna - lnb = ln(a/b)#:

#lim_(x->infty) (x - lnx) = lim_(x->infty) (lne^x - lnx)#

#=lim_(x->infty) ln(e^x/x)#. Let #u = e^x/x#.

Now we will take the limit of #u# as #x# approaches infinity:

#lim_(x->infty) e^x/x#. Since we get the indeterminate form #infty/infty#, and #e^x# and #x#

are differentiable everywhere, we can use L'Hospital's rule:

#lim_(x->infty) (e^x/x) = lim_(x->infty) ((e^x)') / ((x)')#

#=lim_(x->infty) (e^x) = infty#.

Now we know that as #x -> infty#, #u -> infty#, and

#lim_(u->infty) (lnu) = infty#.

Therefore,

#lim_(u->infty) (lnu) = lim_(x->infty) ln(e^x/x)#

#=lim_(x->infty) (lne^x - lnx) = lim_(x->infty) (x - lnx)#.