What is the Integral of # tan^-1x/(1+x^2)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Aug 3, 2016 #= 1/2 (tan^-1 x )^2 + C# Explanation: #int \ tan^-1x/(1+x^2) \ dx# #= int \ tan^-1 x * d/dx (tan^(-1) x) \ dx# #= int d/dx (1/2(\ tan^-1 x )^2 ) \ dx# #= 1/2 (tan^-1 x )^2 + C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 44754 views around the world You can reuse this answer Creative Commons License