What is the integral of #int (sin(2x)*sin(5x)dx)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Feb 27, 2017 The answer is #==1/6sin3x-1/14sin7x+C# Explanation: We use, #cos(a-b)=cosacosb+sinasinb# #cos(a+b)=cosacosb-sina sinb# #cos(a-b)-cos(a+b)=2sinasinb# Here we have, #a=5x# #b=2x# #2sin5xsin2x=cos3x-cos7x# Therefore, #intsin5xsin2xdx=1/2intcos3dx-1/2intcos7xdx# #=1/2(sin3x)/3-1/2(sin7x)/7+C# #=1/6sin3x-1/14sin7x+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 14852 views around the world You can reuse this answer Creative Commons License