What is the integral of #cos^2(x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Cesareo R. May 16, 2016 #int cos(x)^2 dx = x/2 + 1/4 Sin(2 x)+C# Explanation: #cos(alpha+beta)=cos(alpha)cos(beta)-sin(alpha)sin(beta)# Making #alpha=beta->cos(2alpha) = cos(alpha)^2-sin(alpha)^2# but #cos(alpha)^2+sin(alpha)^2=1# then #cos(alpha)^2=( 1+cos(2 alpha))/2# so #int cos(x)^2dx = int( 1+cos(2 x))/2dx = 1/2int dx + 1/2intcos(2x)dx# Finally #int cos(x)^2 dx = x/2 + 1/4 Sin(2 x)+C# Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 5072 views around the world You can reuse this answer Creative Commons License