What is the integral of #arctan(x)#? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Guillaume L. Aug 12, 2018 #inttan^(-1)(x)dx=xtan^(-1)(x)-1/2ln(1+x^2)+C#, #C in RR# Explanation: #I=inttan^(-1)(x)dx# Using integration by parts : #f(x)=tan^(-1)(x)#, #f'(x)=1/(1+x^2)# #g'(x)=1#, #g(x)=x# #I=xtan^(-1)(x)-intx/(1+x^2)dx# #=xtan^(-1)(x)-1/2int(2x)/(1+x^2)dx# Let #u=1+x^2# #du=2xdx# #I=xtan^(-1)(x)-1/2int1/udu# #=xtan^(-1)(x)-1/2ln(|u|)# #=xtan^(-1)(x)-1/2ln(1+x^2)+C# \0/ Here's our answer ! Answer link Related questions How do I evaluate the indefinite integral #intsin^3(x)*cos^2(x)dx# ? How do I evaluate the indefinite integral #intsin^6(x)*cos^3(x)dx# ? How do I evaluate the indefinite integral #intcos^5(x)dx# ? How do I evaluate the indefinite integral #intsin^2(2t)dt# ? How do I evaluate the indefinite integral #int(1+cos(x))^2dx# ? How do I evaluate the indefinite integral #intsec^2(x)*tan(x)dx# ? How do I evaluate the indefinite integral #intcot^5(x)*sin^4(x)dx# ? How do I evaluate the indefinite integral #inttan^2(x)dx# ? How do I evaluate the indefinite integral #int(tan^2(x)+tan^4(x))^2dx# ? How do I evaluate the indefinite integral #intx*sin(x)*tan(x)dx# ? See all questions in Integrals of Trigonometric Functions Impact of this question 213080 views around the world You can reuse this answer Creative Commons License