What is the instantaneous rate of change of f(x)=xe^x-(x-2)e^(3x-2) at x=-1 ?

1 Answer

f' (-1)=8*e^-5
f' (-1)=0.053903575992684

Explanation:

Find the first derivative f' (x) then evaluate f' (-1)
It goes like this;

f(x) = x e^x-(x-2) e^(3x-2)

f' (x) =x e^x*1+e^x*1-[(x-2)*e^(3x-2)*3+e^(3x-2) *1]
now use x=-1

f '(-1)=
(-1)e^-1+e^-1-[(-1-2) e^(3(-1)-2) * 3+e^(3(-1)-2)]

f' (-1)=0-(-3 e^-5 *3+e^-5)

f' (-1)=9e^-5-e^-5

f' (-1)=8 e^-5

f' (-1)= 0.053903575992669