What is the instantaneous rate of change of f(x)=x-e^(x^2-7) at x=3 ?

1 Answer

f' (3)=1-6*e^(2)
f' (3)=-43.33433659

Explanation:

Instantaneous rate of change is the first derivative f' (x)

From the given f(x)=x-e^(x^2-7)

The first derivative is

f(x)=x-e^(x^2-7)

f' (x)=1-e^(x^2-7)*d/dx(x^2-7)

f' (x)=1-e^(x^2-7)*(2x-0)

f' (x)=1-2x*e^(x^2-7)

at x=3

f' (3)=1-2*(3)*e^(3^2-7)

f' (3)=1-6*e^(2)

God bless...I hope the explanation is useful.