What is the instantaneous rate of change of f(x)=(x^2-3x)e^(x) at x=2 ?

1 Answer
Dec 14, 2015

5e^2

Explanation:

The instantaneous rate of change when x=2 can be found through computing f'(2).

To find f'(2), first find f'(x).

Use the product rule:

f'(x)=e^xd/dx[x^2-3x]+(x^2-3x)d/dx[e^x]

f'(x)=e^x(2x-3)+e^x(x^2-3x)

f'(x)=e^x(2x+3+x^2-3x)

f'(x)=e^x(x^2-x+3)

f'(2)=e^2(2^2-2+3)

f'(2)=5e^2

f'(2)~~36.945