What is the instantaneous rate of change of f(x)=sqrt(x^2+4x+2) at x=0 ?
1 Answer
May 17, 2016
Explanation:
The instantaneous rate of change is the value of f'(0).
f(x)=sqrt(x^2+4x+2)=(x^2+4x+2)^(1/2) differentiate using the
color(blue)" chain rule"
d/dx[f(g(x))]=f'(g(x)).g'(x)"......(A)"
"-------------------------------------------------------"
f(g(x))=(x^2+4x+2)^(1/2)
rArrf'(g(x))=1/2(x^2+4x+2)^(-1/2) and
g(x)=x^2+4x+2rArrg'(x)=2x+4
"-----------------------------------------------------------"
Substitute these values into (A)
rArrf'(x)=1/2(x^2+4x+2)^(-1/2) .(2x+4)
=1/2xx1/(x^2+4x+2)^(1/2)xx(2x+4)
rArrf'(0)=1/2xx1/sqrt2xx4=2/sqrt2=(2sqrt2)/2=sqrt2