What is the general formula for the discriminant of a polynomial of degree n?
1 Answer
See explanation...
Explanation:
The discriminant of a polynomial
Given:
f(x) = a_nx^n+a_(n-1)x^(n-1)+...+a_1x+a_0
We have:
f'(x) = na_(n-1)x^(n-1)+(n-1)a_(n-1)x^(n-2)+...+a_1
The Sylvester matrix of
((a_4, a_3, a_2, a_1, a_0, 0, 0),(0, a_4, a_3, a_2, a_1, a_0, 0),(0, 0, a_4, a_3, a_2, a_1, a_0),(4a_4, 3a_3, 2a_2, a_1, 0, 0, 0),(0,4a_4,3a_3,2a_2,a_1,0,0),(0, 0, 4a_4, 3a_3, 2a_2, a_1, 0),(0, 0, 0, 4a_4,3a_3,2a_2,a_1))
Then the discriminant
Delta = (-1)^(1/2n(n-1))/a_nabs(S_n)
For
Delta = (-1)/a_2abs((a_2,a_1,a_0),(2a_2,a_1,0),(0,2a_2,a_1))=a_1^2-4a_2a_0
(which you might find more recognisable in the form
For
Delta = (-1)/a_3abs((a_3, a_2, a_1, a_0, 0),(0, a_3, a_2, a_1, a_0),(3a_3, 2a_2, a_1, 0, 0),(0, 3a_3, 2a_2, a_1, 0), (0, 0, 3a_3, 2a_2, a_1))
color(white)(Delta) = a_2^2a_1^2-4a_3a_1^3-4a_2^3a_0-27a_3^2a_0^2+18a_3a_2a_1a_0
The discriminants for quadratics (
The interpretation of the discriminant for higher order polynomials is more limited, but always has the property that the polynomial has repeated zeros if and only if the discriminant is zero.
Further reading