What is the derivative of y=ln(sec(x)+tan(x))y=ln(sec(x)+tan(x))?

2 Answers
Jul 26, 2014

Answer: y'=sec(x)

Full explanation:

Suppose, y=ln(f(x))

Using chain rule, y'=1/f(x)*f'(x)

Similarly, if we follow for the problem, then

y'=1/(sec(x)+tan(x))*(sec(x)+tan(x))'

y'=1/(sec(x)+tan(x))*(sec(x)tan(x)+sec^2(x))

y'=1/(sec(x)+tan(x))*sec(x)(sec(x)+tan(x))

y'=sec(x)

Apr 18, 2015

Will give you a personal video explanation of how it's done...

Learn how to differentiate y=ln(secx+tanx) in this video

Alternatively, you can use these workings...

ln(secx+tanx)=y

e^y=secx+tanx

e^y*(dy)/(dx)=secxtanx+sec^2x

e^y*(dy)/(dx)=secx(secx+tanx)

(dy)/(dx)=(secx(secx+tanx))/e^y

(dy)/(dx)=(secx(secx+tanx))/((secx+tanx))

(dy)/(dx)=secx