The cross product of 2 vectors is calculated with the determinant
#| (veci,vecj,veck), (d,e,f), (g,h,i) | #
where #veca=〈d,e,f〉# and #vecb=〈g,h,i〉# are the 2 vectors
Here, we have #veca=〈9,2,8〉# and #vecb=〈6,-2,7〉#
Therefore,
#| (veci,vecj,veck), (9,2,8), (6,-2,7) | #
#=veci| (2,8), (-2,7) | -vecj| (9,8), (6,7) | +veck| (9,2), (6,-2) | #
#=veci((2)*(7)-(8)*(-2))-vecj((9)*(7)-(8)*(6))+veck((9)*(-2)-(2)*(6))#
#=〈30,-15,-30〉=vecc#
Verification by doing 2 dot products
#〈30,-15,-30〉.〈9,2,8〉=(30)*(9)+(-15)*(2)+(-30)*(8)=0#
#〈30,-15,-30〉.〈6,-2,7〉=(30)*(6)+(-15)*(-2)+(-30)*(7)=0#
So,
#vecc# is perpendicular to #veca# and #vecb#