What is the cross product of #<5, -3, 8 ># and #<-2 ,7 ,3 >#?
1 Answer
Explanation:
We know that
So for of the unit vectors
#color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk = vec0}))#
Another thing that you should know is that cross product is distributive, which means
#vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC# .
We are going to need all of these results for this question.
#<5,-3,8> xx <-2,7,3>#
#= (5hati - 3hatj + 8hatk) xx (-2hati + 7hatj + 3hatk)#
#= color(white)( (color(black){qquad 5hati xx (-2hati) + 5hati xx 7hatj + 5hati xx 3hatk}), (color(black){-3hatj xx (-2hati) - 3hatj xx 7hatj - 3hatj xx 3hatk}), (color(black){+8hatk xx (-2hati) + 8hatk xx 7hatj + 8hatk xx 3hatk}) )#
#= color(white)( (color(black){-10(vec0) + 35hatk qquad - 15hatj}), (color(black){-6hatk qquad - 21(vec0) - 9hati}), (color(black){qquad -16hatj qquad - 56hati qquad + 24(vec0)}) )#
#= -65hati - 31hatj + 29hatk#