The cross product of 2 vectors is calculated with the determinant
#| (veci,vecj,veck), (d,e,f), (g,h,i) | #
where #veca=〈d,e,f〉# and #vecb=〈g,h,i〉# are the 2 vectors
Here, we have #veca=〈4,5,-7〉# and #vecb=〈5,1,-3〉#
Therefore,
#| (veci,vecj,veck), (4,5,-7), (5,1,-3) | #
#=veci| (5,-7), (1,-3) | -vecj| (4,-7), (5,-3) | +veck| (4,5), (5,1) | #
#=veci((5)*(-3)-(-7)*(1))-vecj((4)*(-3)-(-7)*(5))+veck((4)*(1)-(5)*(5))#
#=〈-8,-23,-21〉=vecc#
Verification by doing 2 dot products
#〈-8,-23,-21〉.〈4,5,-7〉=(-8)*(4)+(-23)*(5)+(-21)*(-7)=0#
#〈-8,-23,-21〉.〈5,1,-3〉=(-8)*(5)+(-23)*(1)+(-21)*(-3)=0#
So,
#vecc# is perpendicular to #veca# and #vecb#