What is the Cartesian form of r^2+r = 2theta-sec^2theta+4csctheta r2+r=2θsec2θ+4cscθ?

1 Answer

Cartesian form:
x^2+y^2+sqrt(x^2+y^2)=2*arctan(y/x)-((x^2+y^2)/x^2)+(4*sqrt(x^2+y^2))/yx2+y2+x2+y2=2arctan(yx)(x2+y2x2)+4x2+y2y

Explanation:

From the given:
r^2+r=2theta-sec^2 theta+4*csc thetar2+r=2θsec2θ+4cscθ
We make use of the equivalent of
r=sqrt(x^2+y^2)r=x2+y2
theta=arctan (y/x)θ=arctan(yx)

Direct substitution
r^2+r=2theta-sec^2 theta+4*csc thetar2+r=2θsec2θ+4cscθ
(sqrt(x^2+y^2))^2+sqrt(x^2+y^2)=2*arctan(y/x)-(sqrt(x^2+y^2)/x)^2+(4*sqrt(x^2+y^2))/y(x2+y2)2+x2+y2=2arctan(yx)(x2+y2x)2+4x2+y2y

The graph of x^2+y^2+sqrt(x^2+y^2)=2*arctan(y/x)-((x^2+y^2)/x^2)+(4*sqrt(x^2+y^2))/yx2+y2+x2+y2=2arctan(yx)(x2+y2x2)+4x2+y2y
graph{x^2+y^2+sqrt(x^2+y^2)=2arctan(y/x)-((x^2+y^2)/x^2)+(4sqrt(x^2+y^2))/y [-20, 20, -10, 10]}

God bless....I hope the explanation is useful.