What is the antiderivative of (ln x)^2/x^2(lnx)2x2?

1 Answer
Mar 17, 2016

intln^2(x)/x^2dx = -(ln^2(x)+2ln(x)+2)/x+Cln2(x)x2dx=ln2(x)+2ln(x)+2x+C

Explanation:

First, we will use substitution

Let t = ln(x) => dt = 1/xdxt=ln(x)dt=1xdx and x = e^tx=et

Then

intln^2(x)/x^2dx = intln^2(x)/x*1/xdx = intt^2e^-tdtln2(x)x2dx=ln2(x)x1xdx=t2etdt

Next, we will use the integration by parts forumla
intudv = uv-intvduudv=uvvdu

Integration by Parts 1:

Let u = t^2u=t2 and dv = e^-tdtdv=etdt
Then du = 2tdu=2t and v = -e^-tv=et

Applying the formula:
intt^2e^-tdt = -t^2e^-t+2intte^-tdtt2etdt=t2et+2tetdt

Integration by Parts 2:
Focusing on the remaining integral...

Let u = tu=t and dv = e^-tdtdv=etdt
Then du = dtdu=dt and v = -e^-tv=et

Applying the formula:
intte^-tdt = -te^-t + inte^-tdttetdt=tet+etdt

=-te^-t-e^-t+C=tetet+C

=-e^-t(t+1)+C=et(t+1)+C

Substituting back, we have

intt^2e^-tdt = -t^2e^-t+2[-e^-t(t+1)]+Ct2etdt=t2et+2[et(t+1)]+C

=-e^-t(t^2+2t+2)+C=et(t2+2t+2)+C

Finally, substituting xx back in gives our final result:

intln^2(x)/x^2dx = -(ln^2(x)+2ln(x)+2)/x+Cln2(x)x2dx=ln2(x)+2ln(x)+2x+C