How do you evaluate the integral #int3^(x) dx#? Calculus Introduction to Integration Integrals of Exponential Functions 1 Answer Monzur R. Mar 14, 2018 #int3^xdx=1/ln3 3^x+"c"# Explanation: We want to find #int3^xdx#. Make the natural substitution #u=3^x# so #du=3^xln3dx#. So #int3^xdx=1/ln3int1du=1/ln3 u+"c"=1/ln3 3^x+"c"# Answer link Related questions How do you evaluate the integral #inte^(4x) dx#? How do you evaluate the integral #inte^(-x) dx#? How do you evaluate the integral #int3e^(x)-5e^(2x) dx#? How do you evaluate the integral #int10^(-x) dx#? What is the integral of #e^(x^3)#? What is the integral of #e^(0.5x)#? What is the integral of #e^(2x)#? What is the integral of #e^(7x)#? What is the integral of #2e^(2x)#? How do I find the antiderivative of #f(x)=1/(e^(2x)-9)^(1/2)#? See all questions in Integrals of Exponential Functions Impact of this question 13569 views around the world You can reuse this answer Creative Commons License