What is the antiderivative of ln(x)ln(x)?

1 Answer
Mar 5, 2015

I = intln(x)dxI=ln(x)dx

Let ln(x) = tln(x)=t

=> x=e^tx=et

=> dx = e^tdtdx=etdt

Substituting in the Integral,

I = intte^tdtI=tetdt

On integrating by parts, keeping the first function as tt and second function as e^tet, we get

I = tinte^tdt - int(dt/dtinte^tdt)dtI=tetdt(dtdtetdt)dt

Which is, simply,

I = te^t - e^t + CI=tetet+C

=> I = e^t ( t-1) + CI=et(t1)+C

Substituting the value of t = ln(x)t=ln(x),

intln(x)dx = x[ln(x) - 1] + Cln(x)dx=x[ln(x)1]+C