What is the antiderivative of (1)/(1+x^2)11+x2?

2 Answers

The antiderivative of 1/(1+x^2)11+x2 is the integral

int 1/(1+x^2)dx11+x2dx which is equivalent to

int 1/(1+x^2)dx=arctanx+C11+x2dx=arctanx+C

where arctanxarctanx is the inverse of the trigonometric function

tanxtanx and C is the integration constant.

Feb 3, 2018

= arctan(x) + c =arctan(x)+c

Explanation:

Let

color(blue)(x = tantheta x=tanθ

=> color(red)(dx = sec^2 theta d theta) " By the use of the quotient rule..." dx=sec2θdθ By the use of the quotient rule...

int 1/(1+color(blue)(x)^2 ) color(red)(dx) = int 1/(1+color(blue)((tantheta))^2 ) * color(red)(sec^2 theta d theta 11+x2dx=11+(tanθ)2sec2θdθ

We know sin^2 x + cos^2 x -= 1 sin2x+cos2x1

=> sin^2 x / cos^2 x + cos^2x/cos^2x -= 1/cos^2 x sin2xcos2x+cos2xcos2x1cos2x

=> tan^2x + 1 -= sec^2 x tan2x+1sec2x

=> int sec^2 theta / sec^2 theta d theta sec2θsec2θdθ

=> int 1 d theta 1dθ

=> theta + cθ+c

If x = tan theta => arctanx = theta x=tanθarctanx=θ

Substitute back in...

color(blue)( arctan(x ) + c arctan(x)+c