Let
color(blue)(x = tantheta x=tanθ
=> color(red)(dx = sec^2 theta d theta) " By the use of the quotient rule..." ⇒dx=sec2θdθ By the use of the quotient rule...
int 1/(1+color(blue)(x)^2 ) color(red)(dx) = int 1/(1+color(blue)((tantheta))^2 ) * color(red)(sec^2 theta d theta ∫11+x2dx=∫11+(tanθ)2⋅sec2θdθ
We know sin^2 x + cos^2 x -= 1 sin2x+cos2x≡1
=> sin^2 x / cos^2 x + cos^2x/cos^2x -= 1/cos^2 x ⇒sin2xcos2x+cos2xcos2x≡1cos2x
=> tan^2x + 1 -= sec^2 x ⇒tan2x+1≡sec2x
=> int sec^2 theta / sec^2 theta d theta ⇒∫sec2θsec2θdθ
=> int 1 d theta ⇒∫1dθ
=> theta + c⇒θ+c
If x = tan theta => arctanx = theta x=tanθ⇒arctanx=θ
Substitute back in...
color(blue)( arctan(x ) + c arctan(x)+c