How do I find the integral int(x^3+4)/(x^2+4)dx ?
1 Answer
I=1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+c , wherec is a constantExplanation,
I=int(x^3+4)/(x^2+4)dx
I=int((x^3)/(x^2+4)+4/(x^2+4))dx
I=int(x^3)/(x^2+4)dx+int4/(x^2+4)dx
I=I_1+I_2 .......(i) Now considering only first integral, which is
I_1=int(x^3)/(x^2+4)dx Using Integration by Substitution,
let's
x^2=t , then2xdx=dt yields, first integral
=intt/2*1/(t+4)*dt
=1/2intt/(t+4)*dt , this can be written as
=1/2int(t+4-4)/(t+4)*dt
=1/2int(1-4/(t+4))dt
=1/2intdt-2int1/(t+4)dt
=1/2t-2ln(t+4)+c_1 , wherec_1 is a constantreplacing
t , we get,
I_1=1/2x^2-2ln(x^2+4)+c_1 , wherec_1 is a constantconsidering second integral
I_2=int4/(x^2+4)dx using Trigonometric Substitution to solve this problem,
I_2=4*1/2tan^-1(x/2)+c_2
I_2=2tan^-1(x/2)+c_2 Finally, plugging in both
I_1 andI_2 in(i)
I=1/2x^2-2ln(x^2+4)+c_1+2tan^-1(x/2)+c_2
I=1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+c , wherec=c_1+c_2 is again a constant