How do I find the integral int(x^3+4)/(x^2+4)dx ?

1 Answer
Aug 1, 2014

I=1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+c, where c is a constant

Explanation,

I=int(x^3+4)/(x^2+4)dx

I=int((x^3)/(x^2+4)+4/(x^2+4))dx

I=int(x^3)/(x^2+4)dx+int4/(x^2+4)dx

I=I_1+I_2 .......(i)

Now considering only first integral, which is I_1=int(x^3)/(x^2+4)dx

Using Integration by Substitution,

let's x^2=t , then 2xdx=dt yields, first integral

=intt/2*1/(t+4)*dt

=1/2intt/(t+4)*dt, this can be written as

=1/2int(t+4-4)/(t+4)*dt

=1/2int(1-4/(t+4))dt

=1/2intdt-2int1/(t+4)dt

=1/2t-2ln(t+4)+c_1, where c_1 is a constant

replacing t, we get,

I_1=1/2x^2-2ln(x^2+4)+c_1, where c_1 is a constant

considering second integral

I_2=int4/(x^2+4)dx

using Trigonometric Substitution to solve this problem,

I_2=4*1/2tan^-1(x/2)+c_2

I_2=2tan^-1(x/2)+c_2

Finally, plugging in both I_1 and I_2 in (i)

I=1/2x^2-2ln(x^2+4)+c_1+2tan^-1(x/2)+c_2

I=1/2x^2-2ln(x^2+4)+2tan^-1(x/2)+c, where c=c_1+c_2 is again a constant