What is the 50th row of Pascal's Triangle?

1 Answer
Jul 27, 2015

((49),(0)) ((49),(1)) ((49),(2)) ... ((49),(49))

where ((n),(m)) = (n!)/(m!(n-m)!)

Explanation:

These terms get a little tedious to calculate, e.g. the middle two are

((49),(24)) = ((49),(25)) = 63205303218876

In general the nth row of Pascal's triangle is:

((n-1),(0)) ((n-1),(1)) ((n-1),(2)) ... ((n-1),(n-1))