How do I use Pascal's triangle to expand a binomial?

1 Answer
Oct 31, 2015

Rows of Pascal's triangle provide the coefficients to expand (a+b)^n as follows...

Explanation:

To expand (a+b)^n look at the row of Pascal's triangle that begins 1, n. This provides the coefficients.

enter image source here

For example, (a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4 from the row 1, 4, 6, 4, 1

How about (2x-5)^4 ?

Let a = 2x and b = -5.

Then:

(2x-5)^4 = (a+b)^4 = a^4+4a^3b+6a^2b^2+4ab^3+b^4

=(2x)^4+4(2x)^3(-5)+6(2x)^2(-5)^2+4(2x)(-5)^3+(-5)^4

=16x^4+4(8x^3)(-5)+6(4x^2)(25)+4(2x)(-125)+(625)

=16x^4-160x^3+600x^2-1000x+625